





#### PARTIAL REPLACEMENT OF CEMENT BY WASTE MARBLE SLURRY

*Effrosyni Christodoulou*<sup>1</sup>, Zoi S. Metaxa<sup>2</sup>, Odysseas Theocharidis<sup>1</sup>, Athanasios Ekmektsis<sup>1</sup>, Athanasios C. Mitropoulos<sup>2</sup>

<sup>1</sup> Alexandros SA, Greece

<sup>2</sup> International Hellenic University, Department of Chemistry, Hephaestus Laboratory, Greece

### **Marble slurry**

- Liquid material comprised of marble particles, water and iron filings
- Waste marble slurry is treated to remove water as much as possible
- The final product "marble sludge" is collected
- Due to its huge volumes, no capability to be stored
- The waste is dumped into nature causing environmental hazards
- Recycling and utilization of waste marble is a critical issue for
  - the environmental sustainability
  - financial benefits





#### Marble slurry deposited in nature



### **Cement industry environmental and economical impact**

- Cement production releases CO<sub>2</sub> emissions
- 1 tone of clinker requires 3GJ of energy to be produced, and releases 1 tone of CO<sub>2</sub> in the atmosphere
- Cement industry responsible for about 5% of global anthropogenic carbon emissions.
- Cement is the most costly material when preparing concrete
- Goal of cement industry: introduction of alternative and innovative materials, methods and technics



CO<sub>2</sub> emissions related to the production of cement and its ratio to total CO<sub>2</sub> emissions, *Thomas D. Kelly and Grecia R. Matos, Historical statistics for mineral and material commodities in the U.S.; published by the United States Geological Survey (USGS), 2015* 

#### Possible benefits from utilizing marble slurry in construction industry

- $\bullet$  reduce the CO<sub>2</sub> emissions
- ✤ lessen the usage of raw materials that are in great demand
- ✤ reduce the consumption of fuels and power
- ✤ offer economic advantages to cement industries
- increase the consumption of a waste material which otherwise would be dumped

Aim of this research:

- a) study the effect of the water content (water/cement ratio)
- b) investigate the effect of the partial substitution of ordinary Portland cement with waste marble slurry determining the optimum marble slurry concentration







Cement paste specimens with marble slurry



## Characterization of waste marble slurry

X-ray Diffraction analysis (XRD)



#### **Characterization of waste marble slurry**

**Scanning electron microscopy (SEM)** 



- Irregular structure
- Abrasive surface

### Particle size distribution



- 50% of cement particles<9.75 μm</li>
- 50% of marble particles<13.19 μm</li>

#### **Typical stress-displacement graphs**



#### **Average compressive strength**



### **Modulus of Elasticity**



Water/cement = 0.3

Water/cement = 0.4

Water/cement = 0.5

#### **Electrical resistivity**



### X-ray Diffraction analysis results



### Fourier-transform infrared spectroscopy (FTIR) results



## **SEM results of samples with w/c=0.5**



#### 10% marble slurry

0% marble slurry

### Conclusions

- Marble slurry can successfully substitute cement powder up to a 10% replacement level when a water to cement (w/c) ratio of 0.5 is used without altering the mechanical performance of the material
- The water to cement ratio strongly affects the effectiveness of marble slurry to be used as cement replacement
- Resistivity results show that at a w/c ratio of 0.5 the incorporation of marble slurry affects positively the pore microstructure of the samples. Possibly improves the porosity by filling the voids. As a result, the cement composites become denser and more resistant in the electrical current
- XRD and FTIR analysis show that marble slurry does not participate in the chemical reactions that take place during the hydration processes of cementitious mixtures
- SEM demonstrates the development of a thicker microstructure when marble slurry is incorporated at a w/c ratio of 0.5

This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program East Macedonia and Thrace 2014-2020 (project code: MIS5034823)



# **Any questions?**