

Use of marble crushed sand in cementitious materials

Effrosyni Christodoulou¹, Maria Amenta², Zoi S. Metaxa², Dimitrios Papaevaggelou¹, Stavros K. Kourkoulis³, Athanasios Ekmektsis¹, and Athanasios C. Mitropoulos²

¹Alexandros SA, 53 Mix. Karaoli str, 67100, Xanthi, Greece

² International Hellenic University, School of Sciences, Department of Chemistry, Hephaestus Laboratory, St. Luke 654 04, Kavala, Greece

³National Technical University of Athens, Department of Mechanics, Laboratory of Testing and Materials, 9 Heroes Polytechniou Str., 15780 Athens, Greece

Marble waste

- Marble slurry
- Broken marble pieces

Benefits from utilizing marble waste in construction industry

- reduce the CO₂ emissions
- Iessen the usage of raw materials that are in great demand
- reduce the consumption of fuels and power
- offer economic advantages to cement industries
- increase the consumption of a waste material which otherwise would be dumped

In this study:

Investigate the effect of partial substitution of natural aggregates with waste marble crashed sand on the rheological properties of mortars

Investigate the effect of waste marble crashed sand granulometry

Rheological properties of fresh mixtures

Effect of Granulometry

- Crashed sand (C)
- Crashed sand Sieved (CS) to remove the finer fractions (<125 µm)

Effect of Granulometry

Partial substitution of natural aggregates with waste marble crashed sand

	N100	C25	C50	C75	CS25	CS50	CS75	CS100
СЕМ	450	450	450	450	450	450	450	450
Natural SAND	1350	1012.5	675	337.5	1012.5	675	337.5	0
Crashed SAND	0	337.5	675	1012.5	337.5	675	1012.5	1350
Water	225	225	225	225	225	225	225	225

Results

Flow Table

Results

Vicat Test

Vicat Test – Crashed Sand 45 **Veedle Penetration (mm)** 35 30 20 15 10 ----C50 ----C75 5 0 5000 15000 10000 0 Time (sec)

Results

Vicat Test

Conclusions

- The replacement of natural sand by crashed marble aggregates up to 50% leads to the improvement of the fresh mortar properties
- Further addition of crashed sand leads to a severe reduction of workability
- When sieved crashed sand was used the replacement ratio could be raised up to 100% without any depreciation of the fresh mixture workability
- The main disadvantage shown by Vicat testing is the earlier setting time measured when crushed aggregates are used and should be accounted for in practical applications

Thank you for your attention!

The authors acknowledge the financial support of the EU (European Social Fund-ESF) and Greek national funds through the Program: "Investment innovation plans for research and development for companies in the quarrying sector"

